Follow MaxBotix:
Ask A Question
|     Written By: Carl Myhre & Tom Bonar     |     Date Posted: 01-06-2012     |
LV-MaxSonar-EZ1 QuickStart Guide

A Word of Welcome

This is provided to serve as an easy to use set-up guide for the LV‑MaxSonar‑EZ family of ultrasonic sensors.  This sensor uses sound to measure the distance to nearby objects, and then reports the information through one of the three sensor outputs.

MaxBotix Inc., is excited to provide this guide which is designed to assist you in using your MaxSonar sensor for the first time!

This quick start guide was created using the LV-MaxSonar-EZ1 MB1010 sensor.

List of Commonly Used Equipment:

1. Power Supply
2. Multimeter
3. Wires
4. LV‑MaxSonar‑EZ1 (or one of the other MaxSonar products)
5. Large flat target – such as a box

Sensor Power Supply Multimeter Thumb Wires & Clips Ultrasonic Sensor Ultrasonic Sensor Target

Determine the Power and Ground Inputs & Outputs

The following chart is provided as an easy reference guide for connecting our MaxSonar products.

Identify your Ground & Power

Supply Power to the Sensor

1. Disconnect the power supply from any equipment.
2. Turn ON the power supply; set the voltage to 5.0V DC (Volts Direct Current).
3. Turn OFF the power supply.
4. Connect the ground from your power supply to the GND pin on the LV‑MaxSonar‑EZ1.
5. Connect your power supply to +5 pin on the LV‑MaxSonar‑EZ1.
6. Turn ON the power supply; verify that the voltage is between +2.5V and +5.5V.

The LV‑MaxSonar‑EZ1 input power should be +5V DC. This system can operate from +2.5V to +5.5V. The current input should read ~3mA for +5V DC and ~2mA for +3.3V DC.

Sensor Power Supply Ultrasonic Rangefinder Power Supply Ultrasonic Sensors Power Supply MaxSonar High Performance Ultrasonic Sensor Ultrasonic Rangefinders Power Supply

Connect to the AN Output

Connect the AN pin (Analog Voltage) to a multimeter by doing the following:
1. Switch the multimeter to read DC voltage.
2a. Connect the ground lead of the multimeter to the ground on your power supply.
2b. Connect the ground lead of the multimeter to the GND pin of the LV‑MaxSonar‑EZ1. (To do this we used a paperclip attached to the ground of our power supply).
3. Connect the power lead of the multimeter to the pin labeled AN on the LV‑MaxSonar‑EZ1. (To do this we used the yellow banana clips to run from the AN pin to the multimeter probe).
4. The display should read the voltage output of the LV‑MaxSonar‑EZ1.

Multimeter Easy Ground Wire on your Power Supply Multimeter Ultrasonic Sensor Easily Connects with AN Output Multimeter

A Picture of Our Setup

Our easy setup

Read the AN Output Using a Multimeter

A Brief Description of the AN pin

The analog voltage pin outputs a voltage which corresponds to the distance. The further away an object is from the sensor the higher the output voltage becomes which in turn will be measured by the multimeter. The sensor is designed to report the range to the closest detectable object.

Calculating the Voltage Scaling

Because the LV-MaxSonar-EZ1 output is scaled to the input power that is provided to the sensor, it is important to know the voltage scaling before calculating the range.

The formula for the voltage scaling on an LV‑MaxSonar‑EZ1 is:
[(Vcc/512) = Vi]
Vcc = Supplied Voltage
Vi = Volts per inch (Scaling)

Example 1: Say you have an input voltage of +5.0V the formula would read:
[(5.0V/512) = 0.009766V per inch = 9.766mV per inch]

Calculating the Range

Once you know the voltage scaling it is easy to properly calculate the range.

The range formula is:
[(Vm/Vi) = Ri]
Vm = Measured Voltage
Vi = Volts per Inch (Scaling)
Ri = Range in inches

Example 2: To get comfortable with this equation use a known distance by using a ruler. Say the multimeter shows 292.98mV then you use the calculations as follows:
[(292.98mV/9.766mV) = 30 inches]

Example 3: To work backward and verify your calculation is correct use the inverse formula:
[(Ri x Vi) = Vm]
[(30 x 9.766) = 292.98]

Additional Considerations

Please note that if you are using a sensor from the HR-MaxSonar, XL-MaxSonar-EZ, XL-MaxSonar-AE, XL‑MaxSonar‑WR, or XL‑MaxSonar‑WRC series the voltage scaling will not match that of the LV‑MaxSonar sensors. To find the voltage scaling of your sensor reference the product datasheet.

Analog Voltage scaling for all of our product lines can be seen in our Using Analog Voltage (Pin 3) tutorial. This tutorial also includes examples for using the Analog Voltage output, as well as integrating with a 10‑bit Analog Digital Converter.

Please note the sensor resolution, for the LV-MaxSonar-EZ1 the resolution is one inch.

The LV-MaxSonar-EZ will, in general, range objects from 0 to 6 inches as 6 inches. Which corresponds to 58.6mV when powered at +5V DC.

The LV-MaxSonar-EZ provides range for objects up to 254 inches away. Sensor will report the closest detectable reflection from an object as defined by the sensor beam pattern. You may view the beam pattern for the LV-MaxSonar-EZ here.

Connect the LV-MaxSonar-EZ to a Microcontroller

1. It is recommended that you first connect the LV-MaxSonar-EZ to either an oscilloscope or a multimeter before you connect the LV-MaxSonar-EZ to a microcontroller for the first time.
2. Connect the microcontroller input pin to the desired LV-MaxSonar-EZ sensor output pin.
3. For the AN pin, the following code example is provided for reference: BasicX Code Example

Read the AN pin (Analog Voltage) with a Microcontroller

1. Ensure proper microcontroller voltage scaling.
2. Ensure proper voltage scaling of the LV-MaxSonar-EZ.
3. Use the proper formula for calculating the distance from the voltage that is read. Reference the sensor datasheet.

Please note: If you are using a microcontroller to read the AN output there is a strong possibility that the microcontroller has internal voltage scaling.

Author: Bob Gross  Date: 11-24-2015
New Machines at MaxBotix MaxBotix Inc., celebrates Thanksgiving with gratitude to God first for our customers, our suppliers, and our employees. The year has been amazing with growth, new machines, and a new build-out. Click here for full article.
Author: Scott Wielenberg  Date: 11-18-2015
Types of Material When designing an application that places an ultrasonic sensor in a visible location, users may wish to conceal the sensor for aesthetic purposes. Additionally, users may desire to hide the sensor to discourage individuals from tampering with the sensor. This article covers several methods that you may use to conceal a sensor. Click here for full article.
Author: Cody Carlson  Date: 11-03-2015
Low versus High Resolution targets When it comes down to it, you purchase a rangefinder for the range readings. The success of an application may hinge upon knowing the exact location of a target. However, a sensor may report one meter even if the target is not exactly one meter away from the sensor. Sensor specifications, such as resolution, precision, and accuracy, help us understand what wiggle room and error will be present in a reading. Click here for full article.
Author: Scott Wielenberg  Date: 10-13-2015
Design Cycle Welcome to the review of the Design Cycle Guide. This article provides the summary of each of the phases with links to the respective articles for more detailed information. Click here for full article.
Written By: Cody Carlson  Date: 10-08-2015
Acoustic Types All targets reflect sound to a varying degree. Ultrasonic sensors use the speed of sound to calculate distance based on the time it takes for an echo to return from a target. More simply put, our sensors detect distance much like a bat or dolphin does. Click here for full article.
Author: Nicole Smith  Date: 08-17-2015
Inc 5000 Overall Seal Inc. Magazine Unveils 34th Annual List of America's Fastest Growing Private Companies–the Inc. 5000. MaxBotix Inc., Ranks No. 3616 with Three–Year Sales Growth of 87%. Click here for full article.
Signup for notification of our exciting new products and periodic new letters. We are excited to provide the latest information from MaxBotix Inc.